
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 270 (2004) 191–206

Wavelet-Galerkin method for the free vibrations of
an elastic cable carrying an attached mass

M. Al-Qassaba,*, S. Nairb

aDepartment of Mechanical Engineering, University of Bahrain, P.O. Box 32038, Manama, Bahrain
bMechanical, Materials and Aerospace Engineering Department, Illinois Institute of Technology,

10 West 32nd St., Chicago, IL 60616, USA

Received 28 August 2002; accepted 8 January 2003

Abstract

A multilevel representation of Daubechies compactly supported wavelet has been used to study the free
vibrations of elastic catenary cables carrying an attached mass. Anti-derivatives of wavelets are used to
guarantee satisfaction of boundary conditions. Natural frequencies, mode shapes and dynamic tensions are
obtained and compared with the classical Fourier series representation. The localization feature of wavelets
has been implemented to enter the singularity region that is produced by the attached mass. More wavelets
are used near the mass location and the spurious oscillations in the solution are minimized with few number
of terms in the series. However, the Fourier solution shows many oscillations along the cable length and
Gibbs phenomenon at the mass location. In both methods, reverting and swapping modes are discovered in
which higher modes revert to lower modes and that the horizontal displacement components become
greater than the vertical ones even for cables with small sag to span ratios.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Because of their flexibility and light weight, cables are used in ocean engineering to carry
attached masses, such as vessels, cameras, hydrophones, etc. The vibration analysis of a cable
carrying an attached mass differs from that of the bare cable since the cable is no longer a smooth
continuous curve. The mass is a source of singularity that disturbs the uniformity of the cable and
therefore needs special attention. Sergev and Iwan [1] found the experimental and theoretical
natural frequencies and mode shapes of strings with attached masses. The string was considered as
a sequence of segments connected at the attached masses. The theoretical solution is found by
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considering the wave propagation equation for each segment. They have found that the
theoretical results agree with the experimental natural frequencies, node and antinode locations
and the modes amplitudes. Rosenthal [2] used an iterative technique called the method of
imaginary reaction to find the static configuration and Stodola’s method for dynamics of slack
cables with discrete masses. He studied two cases: fixed–fixed cable and fixed–free or forced cable.
The effect of the added mass was included in the analysis, too. The author has provided by means
of a log-log plot the modal frequencies and the cable tension for the complete range of sag to span
ratio. The plot showed the phenomenon of frequency crossover and the behavior of the modes at
large sag ratio. Cheng and Perkins [3] used the Hamilton’s principle to derive the equations of
motion of a sagged cable supporting a discrete mass. They assumed a parabolic shape for the
static configuration and a linear analysis for dynamics in keeping with the linear theory presented
by Irvine and Caughey [4] for bare cables. Therefore, they treated cables with small sag to span
ratios only. They considered two asymptotic models. The first one neglected the tangential
accelerations for both the cable and the attached mass. This model is valid for small masses only.
The second model neglected only the tangential acceleration of the cable. This model is suitable
for larger masses. The effect of the cable elasticity and the effect of the mass attached on the
natural frequencies were shown by means of graphs. Cheng and Perkins [5] extended their work of
single mass to include an array of attached masses on a cable. They obtained a closed-form
solution derived from the linear theory of cable vibration. They compared their solution with the
results obtained by Sergev and Iwan [1] and Rosenthal [2]. Their solution converged to the
solution given by Sergev and Iwan [1] of a string supporting four equally spaced, equal masses and
indistinguishable with the results of Rosenthal [2] for the example of six equal masses, unequally
spaced in the range of sag to span ratio less than 1:8. The authors have shown that for a
symmetric array of masses there exist symmetric and antisymmetric modes and for a large number
of attached equally spaced, equal masses the solution converged to the modes of a bare cable.
While for asymmetric array of masses there exist asymmetric modes only. Cheng and Perkins [6]
studied the theoretical and experimental analysis of the forced response vibration of their previous
work [5]. The dynamic displacements have been expressed in terms of the Green function. They
used the example of four equally spaced, equal masses discussed in their previous paper for
comparison. The theoretical and experimental frequency response curves have similar pattern and
some discrepancies arose because of the linear assumption in the asymptotic model. Yu [7]
obtained closed-form solutions of the vibration of cable under complicated loads. He solved the
more general case of cable vibration under both distributed and concentrated static loading,
because he added load components that act in the horizontal direction (out-of-plane direction)
along with vertical loadings. Therefore the cable lay in an inclined plane and the in-plane and out-
of-plane equations of motions are now coupled. He modified the transfer matrix method that was
used by the previously mentioned researchers, to consider a catenary static profile. As a special
case his solution reduced to the first asymptotic model discussed by Cheng and Perkins [3] for a
single mass and the absence of horizontal loading.
The purpose of this paper is to study the free vibration of catenary elastic cables with mass

attached using the wavelet-Galerkin method and compare with the classical Fourier method.
Wavelets have proven to be an efficient tool of analysis in many fields including the solution of
partial differential equations. The main feature of wavelets is that their basis functions are
localized in space and the solution is represented using levels of resolution providing a hierarchy
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of solution. This gives the ability to generate the matrices of a discretized problem at higher levels
of resolution without regenerating the matrices throughout. Besides, there are many classes of
wavelets to try such as Coiflets, Daubechies, Meyer, Morlet, splines wavelets and others. In each
class there is an infinite number of wavelets. The commonly used method in solving partial
differential equations is the wavelet-Galerkin method. It is important that the basis function
selected must satisfy the boundary conditions and since translation is one of the main features of
wavelets the boundary conditions are not satisfied. A direct way to overcome this matter is to use
the anti-derivative of Daubechies wavelets as developed by Xu and Shann [8]. The anti-derivative
wavelets are integral type of the wavelets that satisfy the boundary conditions. Therefore, we
applied the wavelet-Galerkin method using the anti-derivative of Daubechies wavelets to
guarantee the satisfaction of the boundary conditions.

2. General formulation

A suspended catenary elastic cable that carry an attached mass is shown in Fig. 1 in its
equilibrium position. The kinetic energy of the system has two parts coming from the cable and
from the attached mass and is given as follows:

K ¼
1

2

Z l

0

rð ’u2 þ ’v2Þ ds þ
1

2

Z l

0

Mdðs � soÞð ’u2 þ ’v2Þ ds; ð1Þ

where dot means partial differentiation with respect to time, t and the prime means partial
differentiation with respect to the space variable s; l is the cable length, r is the mass of the cable
per unit length, M is the mass of the attached particle, so is the location of the attached particle,
dðsÞ is the Dirac delta and u and v are the cable displacement components in the horizontal and
vertical directions respectively. If dS is the current arc length of the cable, the Lagrangian strain
eðs; tÞ becomes

eðs; tÞ ¼
ðdS � dsÞ

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ u0Þ2 þ ðy0 þ v0Þ2

q
� 1: ð2Þ
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Fig. 1. Static shape of catenary cable carrying an attached mass at s ¼ so and the definition of the co-ordinate system.
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The potential energy can be written as

P ¼
Z l

0

Teþ 1
2

EAe2 � rgv � Mgdðs � soÞv
� �

ds; ð3Þ

where T is the cable static tension and it is function of s; E is the modulus of elasticity and A is
the cross-sectional area of the cable. Using Eqs. (1) and (3) in the Hamilton’s principle

d
Z t2

t1

ðK �PÞ dt ¼ 0; ð4Þ

and performing the variation on u and v and integrating by parts lead toZ t2

t1

Z l

0

ðrþ Mdðs � soÞÞ .udu þ ðrþ Mdðs � soÞÞ.vdv

�

þ
ðT þ EAeÞ
ðeþ 1Þ

ððx0 þ u0Þdu0 þ ðy0 þ v0Þdv0Þ

� ½rþ Mdðs � soÞ�gdv ds

�
dt ¼ 0: ð5Þ

The boundary conditions of a fixed cable at its two ends are given by

uð0; tÞ ¼ vð0; tÞ ¼ 0; uðl; tÞ ¼ vðl; tÞ ¼ 0: ð6Þ

3. Static configuration

A cable with an attached mass can be considered as a cable that consists of two segments
connected at the location of the mass and fixed at the other ends. The equilibrium equations can
be obtained from Eq. (5) by performing further integration by parts and for vanishing dynamic
displacements. The governing equilibrium equations for the catenary are

ðTx0Þ0 ¼ 0; 0pspso and sopspl; ð7Þ

ðTy0Þ0 þ rg ¼ 0; 0pspso and sopspl: ð8Þ

The interface conditions at s ¼ so are obtained as follows:

ðTx0Þjs
þ
o

s�o
¼ 0; ð9Þ

ðTy0Þjs
þ
o

s�o
¼ �Mg; ð10Þ

xðsþo Þ � xðs�o Þ ¼ 0; ð11Þ

yðsþo Þ � yðs�o Þ ¼ 0: ð12Þ

By referring to Fig. 1 the boundary conditions are given as follows:

xð0Þ ¼ 0; yð0Þ ¼ 0; ð13Þ

xðlÞ ¼ b; yðlÞ ¼ �h: ð14Þ
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The solution of Eqs. (7) and (8) that satisfy the conditions (9)–(14) lead to a catenary shape of the
cable.

4. Galerkin procedure

In the procedure of the Galerkin method, basis functions that satisfy the boundary conditions
are used. Thus we assume series solutions for uðs; tÞ and vðs; tÞ in the form

uðs; tÞ ¼
XN
m¼1

UmðtÞfmðsÞ; ð15Þ

vðs; tÞ ¼
XN
m¼1

VmðtÞfmðsÞ; ð16Þ

where fmðsÞ is the basis function satisfying the boundary conditions given in Eq. (6). UmðtÞ and
VmðtÞ are the time-dependant functions for the horizontal and vertical displacements respectively.
They are the only functions that admit variations. Therefore, when substituting Eqs. (15) and (16)
in Eq. (5), sets of coupled ordinary differential equations can be obtained for arbitrary functions
dUm and dVm: In the following equations, the summation symbol has been omitted for brevity and
the repeated indices indicate summation. Horizontal direction (for arbitrary dUm):Z l

0

ðrþ Mdðs � soÞÞfmfn
.UnðtÞ þ

T þ EAe
eþ 1

ðx0 þ Unf
0
nÞf

0
m

� �
ds ¼ 0: ð17Þ

Vertical direction (for arbitrary dVm):Z l

0

ðrþ Mdðs � soÞÞfmfn
.VnðtÞ þ

T þ EAe
eþ 1

ðy0 þ Vnf
0
nÞf

0
m

�

� ðrþ Mdðs � soÞÞgfm

�
ds ¼ 0; ð18Þ

where n;m ¼ 1; 2;y;N; N being the total number of terms in the series.

5. Fourier representation

The basis function used here is fn ¼ sinðnps=lÞ: The boundary conditions on u and v are now
satisfied. In order to non-dimensionalize Eqs. (17) and (18) we define the following parameters:

sn ¼ s=l; xn ¼ x=l; yn ¼ y=l; Un

m ¼ Um=l; Vn

m ¼ Vm=l; tn ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
To=rl2

q
;

Tn ¼ T=To; m ¼ M=rl; a ¼ EA=To; b ¼ rgl=EA;

where To is the horizontal component of the cable static tension. Introducing the above
parameters in Eqs. (17) and (18) and retaining the linear terms only, we get a discretized system of
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equations given in matrix form as follows:

M.c þ Kc ¼ 0; ð19Þ

where

c ¼ fU VgT;

U ¼ ½Un

1 Un

2 ? Un

N �
T; V ¼ ½Vn

1 Vn

2 ? Vn

N �
T;

M ¼
M1 0

0 M1

" #
; M1nm ¼ 1þ 2m sinðmpsnoÞ sinðnpsnoÞ; K ¼

K1 K2

KT
2 K3

" #
;

K1nm ¼ 2mnp2
Z sno

0

ðða� Tn

1 Þðx
*
0

1 Þ2 þ Tn

1 Þ cosðmpsnÞ cosðnpsnÞ dsn

þ 2mnp2
Z 1

sno

ðða� Tn

2 Þðx
*
0

2 Þ2 þ Tn

2 Þ cosðmpsnÞ cosðnpsnÞ dsn;

K2nm ¼ 2mnp2
Z sno

0

ða� Tn

1 Þx
*
0

1 y*
0

1 cosðmpsnÞ cosðnpsnÞ dsn

þ 2mnp2
Z 1

sno

ða� Tn

2 Þx
*
0

2 y*
0

2 cosðmpsnÞ cosðnpsnÞ dsn;

K3nm ¼ 2mnp2
Z sno

0

ðða� Tn

1 Þðy
*
0

1 Þ2 þ Tn

1 Þ cosðmpsnÞ cosðnpsnÞ dsn

þ 2mnp2
Z 1

sno

ðða� Tn

2 Þðy
*
0

2 Þ2 þ Tn

2 Þ cosðmpsnÞ cosðnpsnÞ dsn;

The subscripts 1 and 2, in x; y and T ; indicate the left and right segments of the cable respectively.
To find the natural frequencies, we assume harmonic motion such that c ¼ a sinð %otnÞ; where a
denotes the eigenvector (mode shape) and %o represents the normalized natural frequency and it is
given by %o ¼ o=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rl2=To

p
; where o is the natural frequency. SinceM is a positive definite matrix,

we can use Cholesky decomposition. The eigen system can be solved numerically using an iterative
algorithm [9].

6. Wavelet representation

The basis functions we employ here are the anti-derivative wavelets that satisfy the boundary
conditions of our problem. A wavelet is a localized function on the real line R (see, Refs. [10–12]).
It occupies only an interval, say ½a; b�; and outside this interval it is zero. This interval is
determined by translation and dilation of the wavelet along the real line. If cAL2½R� is a wavelet
then its translation and dilation is represented by

cjkðxÞ ¼ 2j=2cð2jx � kÞ;
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where j; kAZ (Z: the set of all integers). The anti-derivative wavelets are derived by Xu and
Shann [8] to smooth out the wavelets and to easily satisfy the boundary conditions.
They considered the anti-derivative of Daubechies compactly supported wavelets to represent
functions in the Sobolev frames. For Dirichlet boundary conditions the anti-derivative wavelet is
defined as

CjkðxÞ ¼
Z x

0

cjk ds � x %cjk for 0pxpR; ð20Þ

where %cjk ¼ 1
R

RR

0 cjk ds; R ¼ 2p � 1 and p is the wavelet order. For the evaluation of the integral
term in Eq. (20) we can use the algorithm given by Chen et al. [13], so that

CjkðxÞ ¼ 2�j=2 yð2jx � kÞ � yð�kÞ �
x

R
ðyð2jR � kÞ � yð�kÞÞ

h i
for 0pxpR; ð21Þ

where yðxÞ ¼
R x

0 c ds; jX� 1 and

kADj 3
1� Rpkpp � 1 if j ¼ �1;

p � Rpkp2jR � p if jX0:

(
ð22Þ

An example of wavelet and anti-derivative wavelet are shown in Fig. 2. The approximate solutions
of the dynamic displacements are represented by

uJðs; tÞ ¼
XJ�1
j¼�1

X
kADj

UjkðtÞCjkðsÞ; ð23Þ

vJðs; tÞ ¼
XJ�1
j¼�1

X
kADj

VjkðtÞCjkðsÞ; ð24Þ

which show multilevel representation of the displacement components. The total number of terms
in the series is N ¼ ð2Jþ1R þ R � pÞ for J ¼ 0; 1; 2;y; etc. For convenience, some of the
dimensionless parameters need to be changed. The ones that are not mentioned below are
unchanged:

sn ¼ sR=l; xn ¼ xR=l; yn ¼ yR=l; Un

jk ¼ UjkR=l; Vn

jk ¼ VjkR=l; mn ¼ MR=rl:
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Fig. 2. (a) Wavelet and (b) anti-derivative wavelet of Daubechies wavelet of order p ¼ 4:
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Using the basis f ¼ CjkðsÞ and the above dimensionless parameters we can derive the matrices of
the linear system as follows:

M.c þ Kc ¼ 0; ð25Þ

where c is as before and

M ¼
%M 0

0 %M

" #
; %MBZ ¼

Z R

0

CBCZ dsn þ mnCBðsnoÞCZðsnoÞ

K ¼
K1 K2

KT
2 K3

" #
;

K1BZ ¼R2

Z sno

0

ðða� Tn

1 Þðx
*
0

1 Þ2 þ Tn

1 ÞC
0
Bðs

nÞC0
Zðs

nÞ dsn

þ R2

Z R

sno

ðða� Tn

2 Þðx
*
0

2 Þ2 þ Tn

2 ÞC
0
Bðs

nÞC0
Zðs

nÞ dsn;

K2BZ ¼R2

Z sno

0

ða� Tn

1 Þx
*
0

1 y*
0

1 C0
Bðs

nÞC0
Zðs

nÞ dsn

þ R2

Z R

sno

ða� Tn

2 Þx
*
0

2 y*
0

2 C0
Bðs

nÞC0
Zðs

nÞ dsn;

K3BZ ¼R2

Z sno

0

ðða� Tn

1 Þðy
*
0

1 Þ2 þ Tn

1 ÞC
0
Bðs

nÞC0
Zðs

nÞ dsn

þ R2

Z R

sno

ðða� Tn

2 Þðy
*
0

2 Þ2 þ Tn

2 ÞC
0
Bðs

nÞC0
Zðs

nÞ dsn;

where B and Z have been used to denote the double indices B ¼ ði; jÞ and Z ¼ ðm; nÞ: Since M is a
positive definite matrix, we can use Cholesky decomposition and follow the same procedure of the
previous section to solve for the eigensystem.

7. Results and discussions

We considered a cable of length l ¼ 2002:37 m that has level supports, h ¼ 0; a span b ¼
2000 m and elastic parameter b ¼ rgl=EA ¼ 1=5000: A centrally attached mass was considered
with a mass ratio of m ¼ 0:1: The parameter a then becomes a ¼ 732: The wavelet function used is
the Daubechies wavelet of the fourth order, p ¼ 4: Table 1 shows the first six natural frequencies
of the cable obtained by Fourier and wavelet methods using N ¼ 59: The two methods are
identical to five significant figures as shown. The mode shapes of the horizontal and vertical
displacement components of selected modes are shown in Fig. 3 as obtained by Fourier solution.
The wavelet solution is identical to the Fourier solution. The mode shapes are normalized with
respect to the vertical displacement component so that its maximum value is always made equal to
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one. The first and second modes are similar to the first and second modes of the same cable if
m ¼ 0: The first two and the subsequent mode shapes will continue to behave similarly to those of
the bare cable except that for the attached mass problem the vertical displacement components of
the symmetric modes will have cusps at the mass location. Similarly, the horizontal displacement
components will have cusps at the mass location but in the antisymmetric modes. The cusps
become sharper as the mass ratio is increased. Mode 26 is similar to mode 30 of the bare cable
which is the first reverting partially swapping mode first reported by AL-Qassab and Nair [14]. In
this mode the horizontal displacement component is larger than the vertical displacement
component. The reverting partially swapping modes appear in our solutions because we have not
neglected the horizontal inertia in the analysis. Researchers who used order of magnitude analysis
in which the horizontal displacement was always assumed smaller than the vertical displacement
failed to discover the reverting modes. Those who used numerical techniques considered the first
few lower modes and missed the opportunity to find the reverting modes. As an illustration, a
comparison is made with the method explained by Cheng and Perkins [3] as shown in Table 2. The
numbering of modes is based on the present method. Since they based their analysis on the linear
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Table 1

Selected frequencies obtained by using Fourier and wavelet solutions

Mode no. Fourier Wavelet

1 4.6548 4.6548

2 6.2777 6.2777

3 8.7329 8.7329

4 12.573 12.573

5 14.515 14.515

6 18.862 18.862
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Fig. 3. Normalized mode shapes of selected modes: (a) horizontal displacements and (b) vertical displacements.

M. Al-Qassab, S. Nair / Journal of Sound and Vibration 270 (2004) 191–206 199



theory which has been developed by Irvine and Caughey [4] they failed to produce the reverting
modes in their solution. Therefore, mode 27 is actually mode 26 in their solution.
The effect of increasing the mass ratio on the modes is shown in Fig. 4. It is interesting to notice

that the reverting modes are moving towards the lower modes and creating what is known as
frequency crossover. For very large mass ratios the first mode of oscillation is of a reverting mode
type.
Fig. 5 shows the dynamic tension of the cable associated with the fundamental mode of

vibration as obtained by Fourier and wavelet methods for different number of terms, N: We
notice that both methods show the peak of oscillation at the mass location. However, the Fourier
solution shows more oscillation along the cable length too, whereas the wavelet solution shows
smooth line except at the mass location. Those oscillations are in the form of wavelets with their
width getting narrower as N is increased and eventually the oscillations will diminish as N
becomes large. Fig. 6 shows a log plot of the absolute values of the series coefficients versus the
number of terms for the horizontal and vertical displacements of the fundamental mode using
N ¼ 227: Both Fourier and wavelet series coefficients are shown in a manner similar to the
frequency spectrum. The coefficients are normalized by dividing by the maximum coefficient of
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Table 2

Comparison of frequencies calculated by Cheng and Perkins and the present method

Mode no. Cheng and Perkins [3] Present method

(Fourier)

1 4.658 4.6548

2 6.2818 6.2777

^
25 75.9136 76.4443

26 — 77.4206

27 81.6813 81.7578
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Fig. 4. Effect of the mass ratio on the natural frequencies. - - - - -; antisymmetric modes, —— –——; symmetric modes,

———–; reverting modes.
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the vertical displacement. The Fourier solution shows that the coefficient amplitudes are
decreasing as N is increasing. The wavelet coefficients are also decreasing with increasing N except
at the mass location. For levels 2–4 the coefficients of the wavelets that overlap the mass location
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Fig. 5. First mode dynamic tension of the cable with a centrally attached mass as obtained by Fourier method (left) and

wavelet method (right): m ¼ 0:1:
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are very large and are as significant as those found in level 1. Moreover, they are a factor of
millions greater than the rest of the coefficients. Therefore, as can be seen from the figure, there
are about five terms which make strong contribution to the solution in the resolution levels
following J ¼ 1 and the rest can be ignored without affecting the solution. Hence, if we found that
the solution is satisfactory with level J everywhere along the cable length except at the mass
location we add only those five terms in the subsequent levels greater than J: The terms that
should be added for a particular level j > J are given by the following equation:

2jsno � ðR � 2Þpkp2jsno � 1; JojpJmax; ð26Þ

where k is the number of term added so that the corresponding wavelet has interaction with the
singular point and Jmax is the maximum level used. Fig. 7 shows the effect of the above procedure
on the dynamic tension of mode 1. It is clear that the solution using J ¼ 1 and Jmax ¼ 4 with
N ¼ 46 corresponds to the one with N ¼ 227 shown in Fig. 5. Unfortunately, the singularity
cannot be eliminated completely when increasing Jmax: However, it is confined in the interval

sno � 2�Jmaxpsnpsno þ 2�Jmax : ð27Þ

A slack cable with heavy mass located at quarter length of the cable is now considered. The
same cable of the previous example is used with the following changes; span b ¼ 1500 m; mass
ratio m ¼ 5; sno ¼ 0:25 and a ¼ 4598: The other parameters are kept the same. The segment of the
cable between the left support and the location of the mass is taut while the second segment is
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Fig. 6. Coefficient amplitudes versus the number of terms. (a) Fourier coefficients and (b) wavelet coefficients.
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slack as can be seen in Fig. 8, in which the tension in the left segment is about five times greater
than the tension in the right segment. Fig. 8 also shows the sudden drop in the tension at the
location of the mass. For the wavelet solution, all the terms in the levels up to J ¼ 3 will be
considered and only five terms in the subsequent levels up to Jmax ¼ 6 will be added. Thus, the
total number of terms becomes, N ¼ 130: Same number of terms in the Fourier solution will be
used for the sake of comparison. In Table 3 the natural frequencies as obtained by Fourier and
wavelets methods are compared. The percentage of errors of mode 1–6 are less than 1%, while for
mode 7 it is approximately 1.5%. The differences between the two methods are more noticeable
than those found in Table 1 of the previous example. Fig. 9 shows the normalized dynamic
displacements and dynamic tensions for modes 1, 2, 7 and 14 as obtained by Fourier and wavelet
methods. The node locations found in the Fourier solution are ahead of those found in the
wavelet solution. In modes 1, 2 and similar modes the vertical displacement components are
greater than the associated horizontal displacement components with maximum peaks occurring
to the right of the attached mass and almost negligible displacements to the left of the attached
mass. This is mainly true in the vertical components. Moreover, the vertical components of the
right segment behave similarly to those of a horizontally supported bare cable. The maximum
peaks in the horizontal components are always found to be the first peak from the right support.
In modes 7 and 14 and similar modes, the horizontal displacement components are greater than
the vertical ones, with the left segments of horizontal components reverting to the right segments
of the vertical components of modes 1, 2 and similar modes respectively. Mode 14 shows large
differences between the wavelet and Fourier solutions in which the maximum peak in the vertical
component in the Fourier solution is found in the right segment, whereas it is found in the left
segment in the wavelet solution. The horizontal components associated with mode 14 are almost
identical in both methods but due to the normalization they look different in scale.
The dynamic tensions in all the modes exhibit sudden drop at the mass location. The Fourier

solution shows many spurious oscillations along the cable length and Gibbs phenomenon at the
mass location. Whereas, in the wavelet solution the oscillations are eliminated along the cable
length and confined at the mass location in a small region given by Eq. (27), it is noticed, in the
dynamic tensions as obtained by Fourier solution, that in modes 1, 2 and similar modes there are
more oscillations in the left segment and in modes 7, 14 and similar modes there are more
oscillations in the right segment. In any case, this gives the indication of presence of error in the
Fourier solution.
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Table 3

Comparison of frequencies as obtained by Fourier and wavelet methods

Mode no. Fourier, %oF Wavelet, %oW
%oF� %oW

%oF
100

1 2.9618 2.9340 0.94

2 8.5902 8.5151 0.87

3 12.6844 12.5768 0.85

4 17.4575 17.3094 0.85

5 21.6318 21.4499 0.84

6 26.2609 26.039 0.84

7 28.1852 27.7568 1.52
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8. Conclusion

The free vibration of a catenary cable carrying an attached mass was formulated using the
Hamilton’s principle. The equations of motion are linearized and a Galerkin solution was applied
with Fourier and wavelet representations. Comparisons between Fourier and wavelet solutions
are presented that include the cable natural frequencies, the mode shapes and the dynamic
tensions of the cable at different mode numbers and using different number of terms, N; for both
methods.
As far as the natural frequencies and mode shapes are concerned the Fourier and wavelet

solutions are generally in good agreement. As far as the dynamic tension is concerned the Gibbs
phenomenon is clearly shown to exist at the mass location in the Fourier solution. Whereas, the
oscillations in the wavelet solution are found only at the mass location. The singularity region is
made very small by considering only the wavelets that interact with it and hence achieving better
results with fewer terms. Because of the inclusion of the inertia term of the horizontal
displacement component in the analysis, reverting modes are found. For such modes the
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horizontal displacement components are greater than the associated vertical displacement
components. The reverting modes might be higher modes in bare cables but they move towards
the lower modes as the mass ratio is increased.
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